Sporulation-associated activation of Bacillus sphaericus larvicide.

نویسندگان

  • A H Broadwell
  • P Baumann
چکیده

Preparations of the larvicidal crystal from 46-h cultures of Bacillus sphaericus 2362 contain 125-, 110-, 63-, and 43-kilodalton (kDa) proteins (P. Baumann, B. M. Unterman, L. Baumann, A.H. Broadwell, S.J. Abbene, and R.D. Bowditch, J. Bacteriol. 163:738-747, 1985). The 63- and 43-kDa proteins, which have been purified, are not immunologically cross-reactive, and only the 43-kDa protein is toxic to mosquito larvae. Since antigenic determinants of the two smaller proteins have been detected in the higher-molecular-weight proteins (125 and 110 kDa), it has been suggested that the latter are precursors of the 43- and 63-kDa peptides. In the present study, purified 110-kDa protein was found to be toxic to the larvae of Culex pipiens (50% lethal concentration = 115 ng/ml). A luciferase-luciferin assay for intracellular ATP as well as an assay based on the exclusion of Trypan Blue by live cells indicated that the 110-kDa protein had no effect on tissue-culture-grown cells of C. quinquefasciatus, while cells exposed to the 43-kDa protein rapidly lost viability (50% lethal concentration = 54 microgram(s)/ml by the intracellular ATP assay). These findings suggested that the 110-kDa protein and, by extension, the 125-kDa protein are protoxins which are activated during sporulation by cleavage to a 43-kDa toxin. To further investigate the origins and relationships of the crystal proteins of B. sphaericus, we analyzed samples during the growth and sporulation of the culture. Synthesis of crystal proteins was initiated at the end of exponential growth and was completed after about 7 h.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bacillus sphaericus as a mosquito pathogen: properties of the organism and its toxins.

In the course of sporulation, Bacillus sphaericus produces an inclusion body which is toxic to a variety of mosquito larvae. In this review we discuss the general biology of this species and concentrate on the genetics and physiology of toxin production and its processing in the midgut of the larval host. The larvicide of B. sphaericus is unique in that it consists of two proteins of 51 and 42 ...

متن کامل

Tightly bound binary toxin in the cell wall of Bacillus sphaericus.

We have shown that urea-extracted cell wall of entomopathogenic Bacillus sphaericus 2297 and some other strains is a potent larvicide against Culex pipiens mosquitoes, with 50% lethal concentrations comparable to that of the well-known B. sphaericus binary toxin, with which it acts synergistically. The wall toxicity develops in B. sphaericus 2297 cultures during the late logarithmic stage, earl...

متن کامل

Expression in Bacillus subtilis of the 51- and 42-kilodalton mosquitocidal toxin genes of Bacillus sphaericus.

A 3,080-base-pair KpnI-HindIII DNA fragment from Bacillus sphaericus 2362 coding for 51- and 42-kilodalton mosquitocidal proteins was cloned into Bacillus subtilis DB104 by using the vector pUB18. In B. subtilis these proteins were not detected during vegetative growth but were expressed during sporulation at levels comparable to those found in B. sphaericus.

متن کامل

Bacillus sphaericus as a Mosquito Pathogen : Properties of the Organism and Its Toxinst PAUL BAUMANN , ' * MARTA

In the course of sporulation, some strains of Bacillus sphaericus synthesize a parasporal inclusion or "crystal" (Fig. 1), which contains proteins toxic for larvae of a variety of mosquito species (64, 74). Upon completion of sporulation, the crystal remains associated with the endospore, both being enclosed within the exosporium (74). The major components of the crystal are two proteins of 51 ...

متن کامل

Cyt1A from Bacillus thuringiensis synergizes activity of Bacillus sphaericus against Aedes aegypti (Diptera: Culicidae).

Bacillus sphaericus is a mosquitocidal bacterium recently developed as a commercial larvicide that is used worldwide to control pestiferous and vector mosquitoes. Whereas B. sphaericus is highly active against larvae of Culex and Anopheles mosquitoes, it is virtually nontoxic to Aedes aegypti, an important vector species. In the present study, we evaluated the capacity of the cytolytic protein ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 52 4  شماره 

صفحات  -

تاریخ انتشار 1986